Preface |
|
ix | |
|
|
1 | (3) |
|
|
4 | (18) |
|
|
4 | (1) |
|
|
5 | (2) |
|
Criteria for a good decision rule |
|
|
7 | (4) |
|
Randomised decision rules |
|
|
11 | (1) |
|
|
11 | (7) |
|
Finding minimax rules in general |
|
|
18 | (1) |
|
Admissibility of Bayes rules |
|
|
19 | (1) |
|
|
19 | (3) |
|
|
22 | (43) |
|
|
22 | (6) |
|
The general form of Bayes rules |
|
|
28 | (4) |
|
|
32 | (1) |
|
Shrinkage and the James--Stein estimator |
|
|
33 | (5) |
|
|
38 | (1) |
|
Choice of prior distributions |
|
|
39 | (3) |
|
|
42 | (6) |
|
|
48 | (4) |
|
|
52 | (3) |
|
Data example: Coal-mining disasters |
|
|
55 | (2) |
|
Data example: Gene expression data |
|
|
57 | (3) |
|
|
60 | (5) |
|
|
65 | (16) |
|
Formulation of the hypothesis testing problem |
|
|
65 | (3) |
|
The Neyman--Pearson Theorem |
|
|
68 | (1) |
|
Uniformly most powerful tests |
|
|
69 | (4) |
|
|
73 | (5) |
|
|
78 | (3) |
|
|
81 | (9) |
|
|
81 | (5) |
|
|
86 | (2) |
|
|
88 | (2) |
|
Sufficiency and completeness |
|
|
90 | (8) |
|
Definitions and elementary properties |
|
|
90 | (4) |
|
|
94 | (1) |
|
The Lehmann--Scheffe Theorem |
|
|
95 | (1) |
|
Estimation with convex loss functions |
|
|
95 | (1) |
|
|
96 | (2) |
|
Two-sided tests and conditional inference |
|
|
98 | (22) |
|
Two-sided hypotheses and two-sided tests |
|
|
99 | (6) |
|
Conditional inference, ancillarity and similar tests |
|
|
105 | (9) |
|
|
114 | (3) |
|
|
117 | (3) |
|
|
120 | (20) |
|
Definitions and basic properties |
|
|
120 | (5) |
|
The Cramer--Rao Lower Bound |
|
|
125 | (2) |
|
Convergence of sequences of random variables |
|
|
127 | (1) |
|
Asymptotic properties of maximum likelihood estimators |
|
|
128 | (4) |
|
Likelihood ratio tests and Wilks' Theorem |
|
|
132 | (2) |
|
More on multiparameter problems |
|
|
134 | (3) |
|
|
137 | (3) |
|
|
140 | (29) |
|
|
141 | (2) |
|
|
143 | (2) |
|
|
145 | (1) |
|
Parametrisation invariance |
|
|
146 | (2) |
|
|
148 | (1) |
|
|
149 | (3) |
|
Laplace approximation of integrals |
|
|
152 | (1) |
|
|
153 | (6) |
|
Conditional inference in exponential families |
|
|
159 | (1) |
|
|
160 | (1) |
|
Modified profile likelihood |
|
|
161 | (2) |
|
|
163 | (1) |
|
|
164 | (5) |
|
|
169 | (21) |
|
|
169 | (3) |
|
Decision theory approaches |
|
|
172 | (3) |
|
Methods based on predictive likelihood |
|
|
175 | (4) |
|
|
179 | (4) |
|
|
183 | (2) |
|
Conclusions and recommendations |
|
|
185 | (1) |
|
|
186 | (4) |
|
|
190 | (28) |
|
|
191 | (3) |
|
The prepivoting perspective |
|
|
194 | (7) |
|
Data example: Bioequivalence |
|
|
201 | (2) |
|
Further numerical illustrations |
|
|
203 | (5) |
|
Conditional inference and the bootstrap |
|
|
208 | (6) |
|
|
214 | (4) |
Bibliography |
|
218 | (5) |
Index |
|
223 | |