Series Introduction |
|
xv | |
I. General Introduction |
|
1 | (3) |
II. The Forward Trip: From the Hamiltonian to the Vibration--Rotation Spectrum |
|
4 | (91) |
|
|
4 | (1) |
|
The Forward Trip: An Ab Initio Approach |
|
|
5 | (51) |
|
Exact Quantum Mechanical Formulation |
|
|
5 | (20) |
|
Full Molecular Hamiltonian |
|
|
5 | (1) |
|
Born--Oppenheimer Separation |
|
|
6 | (2) |
|
Translation-Free Hamiltonian |
|
|
8 | (1) |
|
Vibration--Rotation Separation |
|
|
9 | (1) |
|
Molecular Axis System (MAS) |
|
|
9 | (1) |
|
|
9 | (2) |
|
|
11 | (1) |
|
|
12 | (1) |
|
Exact Vibration--Rotation Hamiltonian |
|
|
12 | (1) |
|
Vibration--Rotation Kinetic Energy Operator |
|
|
12 | (1) |
|
|
12 | (1) |
|
Exact Vibration--Rotation Schrodinger Equation |
|
|
13 | (1) |
|
Variational Resolution of the Vibration--Rotation Schrodinger equation |
|
|
13 | (1) |
|
|
13 | (1) |
|
Linear Variational Method |
|
|
14 | (2) |
|
Configuration Interaction Method |
|
|
16 | (1) |
|
Diagonalisation of the Vibration-Rotation Hamiltonian |
|
|
16 | (1) |
|
Energy Spectrum of the Vibration-Rotation Hamiltonian |
|
|
17 | (2) |
|
Vibration--Rotation Transition Energies |
|
|
19 | (2) |
|
Vibration--Rotation Lines Intensities |
|
|
21 | (1) |
|
Optical Vibration--Rotation Transition Probabilities |
|
|
21 | (1) |
|
Electric Dipole Transition Probabilities |
|
|
22 | (2) |
|
|
24 | (1) |
|
Full Ab Initio Forward Trip |
|
|
25 | (1) |
|
Towards a Converged Ab Initio Approach |
|
|
25 | (31) |
|
Setting the Ab Initio Approach |
|
|
25 | (1) |
|
|
25 | (1) |
|
General Problems with Pes and DMS |
|
|
26 | (1) |
|
Choice of a Coordinate System |
|
|
27 | (1) |
|
|
27 | (1) |
|
Rectilinear Versus Curvilinear Coordinates |
|
|
27 | (2) |
|
Selected Curvilinear Coordinates |
|
|
29 | (1) |
|
Curvilinear Bond-Angle Coordinates |
|
|
29 | (1) |
|
|
29 | (1) |
|
Heliocentric-Type Coordinates |
|
|
30 | (1) |
|
Adapted Stretching Coordinates |
|
|
30 | (1) |
|
Potential-Adapted Coordinates |
|
|
30 | (2) |
|
Adapted Bending Coordinates |
|
|
32 | (1) |
|
|
32 | (1) |
|
Curvilinear Normal Coordinates |
|
|
33 | (1) |
|
Transformation of Coordinates |
|
|
33 | (1) |
|
Approximate PES from Quantum Chemistry |
|
|
34 | (1) |
|
Ab Initio Level of Calculation |
|
|
34 | (4) |
|
Analytical Expression for the Pes |
|
|
38 | (1) |
|
Adjustment of an Analytical Function to Ab Initio Calculated Points |
|
|
39 | (3) |
|
Analytical Versus Numerical Derivatives Calculations |
|
|
42 | (2) |
|
|
44 | (1) |
|
Ab initio Electric Dipole Moment Surfaces |
|
|
44 | (1) |
|
|
45 | (1) |
|
Contraction or Diagonalization-Truncation |
|
|
45 | (2) |
|
General Mean-Field Optimizations |
|
|
47 | (2) |
|
The Vibrational Multiconfigurational SCF Method |
|
|
49 | (1) |
|
Discrete-Variable Representation (DVR) |
|
|
50 | (2) |
|
|
52 | (1) |
|
Morse Oscillator Rigid Bender Internal Dynamics (MORBID) Approach |
|
|
52 | (1) |
|
Perturbation Theory Methods |
|
|
53 | (1) |
|
|
53 | (1) |
|
Treatment of Resonating States |
|
|
54 | (1) |
|
High Order Canonical Van Vleck Perturbation Theory (CVPT) |
|
|
54 | (2) |
|
Acetylene: A Laboratory for Intramolecular Advances |
|
|
56 | (39) |
|
|
56 | (17) |
|
|
56 | (1) |
|
|
57 | (1) |
|
Topology of the Ground-State PES |
|
|
58 | (4) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
63 | (3) |
|
Symmetry-Adapted Coordinates |
|
|
66 | (1) |
|
Rectilinear Normal Coordinates |
|
|
66 | (1) |
|
|
67 | (1) |
|
Vibration--Rotation Hamiltonian for Acetylene |
|
|
67 | (1) |
|
Choice of a Coordinate System |
|
|
67 | (2) |
|
|
69 | (2) |
|
|
71 | (2) |
|
Forward and Backward Trips Applied to Acetylene |
|
|
73 | (22) |
|
Refined Quartic Force Fields in Valence Internal Coordinates |
|
|
73 | (1) |
|
Refinement From Second-Order Perturbation Theory: The Strey--Mills Potential |
|
|
73 | (1) |
|
Variational Calculations with a Modified SM Potential |
|
|
74 | (1) |
|
Sixth-Order CVPT with the SM Potential |
|
|
75 | (1) |
|
Refinement from Variational Calculations: The Bramley--Carter--Handy--Mills Potential |
|
|
76 | (2) |
|
Variational Calculations with the BCHM Potential |
|
|
78 | (1) |
|
Ab initio Quartic Force Fields |
|
|
79 | (1) |
|
SCF Quartic Force Field from Analytical Derivatives |
|
|
79 | (1) |
|
SD(Q)CI Quartic Force Field and SDCI Cubic Electric Field from Grid Calculations |
|
|
80 | (1) |
|
Testing the Quality of the SDCI and SD(Q)CI Force Fields |
|
|
80 | (1) |
|
Overtone Spectrum of Stretching Modes |
|
|
81 | (6) |
|
Analysis of Stretch--Bend Interactions from the Vcasscf Approach |
|
|
87 | (1) |
|
CCSD(T) Quartic Force Field from Numerical Differences |
|
|
87 | (2) |
|
|
89 | (1) |
|
DVR Variational Calculations |
|
|
89 | (2) |
|
Adiabatic Variational Refinement |
|
|
91 | (1) |
|
Classical and Semiclassical Approaches of Intramolecular Dynamics |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
93 | (1) |
|
Normal, Local, and Precessional Bending Modes |
|
|
93 | (1) |
|
|
94 | (1) |
III. The Backward Trip: From the Vibration-Rotation Data to the Hamiltonian |
|
95 | (158) |
|
|
95 | (7) |
|
|
95 | (3) |
|
|
95 | (1) |
|
|
95 | (1) |
|
Matrix Image of the Molecule |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
98 | (4) |
|
|
98 | (4) |
|
|
102 | (1) |
|
|
102 | (40) |
|
|
102 | (3) |
|
|
105 | (10) |
|
The Harmonic Oscillator (Hhar) |
|
|
105 | (3) |
|
The Anharmonic Oscillator (vHvanhdiag) |
|
|
108 | (1) |
|
One Dimensional Dunham Expansion |
|
|
109 | (4) |
|
Multidimensional Dunham Expansion |
|
|
113 | (2) |
|
|
115 | (13) |
|
Anharmonic Resonances (Hvanhoff-diag) |
|
|
115 | (1) |
|
|
115 | (2) |
|
|
117 | (1) |
|
|
118 | (4) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (3) |
|
Unusual Quartic Resonances |
|
|
126 | (2) |
|
|
128 | (14) |
|
|
128 | (1) |
|
|
129 | (1) |
|
Harmonic Contributions (Hvhar(lin)) |
|
|
129 | (2) |
|
|
131 | (2) |
|
Diagonal Anharmonic Terms |
|
|
133 | (2) |
|
Off-Diagonal Terms (Hvanhar(lin)off-diag) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (3) |
|
Anharmonic and l Resonances |
|
|
139 | (3) |
|
|
142 | (23) |
|
|
142 | (5) |
|
|
142 | (1) |
|
|
142 | (3) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
145 | (2) |
|
|
147 | (13) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (2) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (4) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
157 | (3) |
|
|
160 | (5) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (4) |
|
|
165 | (33) |
|
|
165 | (1) |
|
Rigid Rotor Hamiltonian (Hrrig) |
|
|
166 | (12) |
|
|
166 | (1) |
|
|
167 | (4) |
|
|
171 | (1) |
|
|
171 | (2) |
|
|
173 | (5) |
|
Vibration--Rotation Hamiltonian |
|
|
178 | (10) |
|
|
178 | (1) |
|
|
179 | (2) |
|
Linear Polyatomic Species |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (3) |
|
|
187 | (1) |
|
Vibration--Rotation Fits in Acetylene |
|
|
188 | (10) |
|
MIME for Lower Bending Levels in 12C2H2 |
|
|
188 | (5) |
|
Vibration--Rotation Wavefunctions in 12C2H2 |
|
|
193 | (1) |
|
Lower-Energy Bending Energy Levels |
|
|
193 | (2) |
|
Fundamental CH Stretching Vibration, v3 |
|
|
195 | (1) |
|
Lower Bending Levels in 12C2D2 |
|
|
195 | (2) |
|
Rotational Constants in 12C2H2 Overtone Levels |
|
|
197 | (1) |
|
Molecular Vibration-Rotation Spectra |
|
|
198 | (55) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (11) |
|
Absorption Induced by Electric Dipole Interactions |
|
|
200 | (2) |
|
Absorption Coefficient: Beer's Law |
|
|
202 | (1) |
|
|
203 | (2) |
|
|
205 | (2) |
|
|
207 | (1) |
|
Thermal Distribution over the Energy Levels |
|
|
207 | (1) |
|
Total Internal Partition Function |
|
|
207 | (1) |
|
|
208 | (1) |
|
Statistical Weight of the Rovibronic Levels |
|
|
209 | (1) |
|
Integrated Absorption Coefficient and Cross Section |
|
|
209 | (2) |
|
|
211 | (1) |
|
Dipole Moment Matrix Elements for Vibration-Rotation Transitions |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
214 | (8) |
|
|
214 | (1) |
|
Non Degenerate Vibrations |
|
|
214 | (2) |
|
|
216 | (1) |
|
Vibrational Bands in the Harmonic Oscillator Approximation |
|
|
217 | (2) |
|
Application to Linear Molecules |
|
|
219 | (1) |
|
Vibrational Bands for the Anharmonic Oscillator |
|
|
220 | (1) |
|
Influence of Mechanical Anharmonicity |
|
|
220 | (1) |
|
Resonances and Intensity Borrowing |
|
|
221 | (1) |
|
Vibration--Rotation Spectra |
|
|
222 | (31) |
|
Rigid Rotor Selection Rules |
|
|
222 | (1) |
|
Vibration--Rotation Transitions |
|
|
223 | (1) |
|
|
223 | (6) |
|
|
229 | (5) |
|
|
234 | (9) |
|
Vibration--Rotation Interaction |
|
|
243 | (1) |
|
The Effective Dipole Moment Operator |
|
|
243 | (3) |
|
Influence of Vibration--Rotation Resonances on Intensities |
|
|
246 | (2) |
|
Herman--Wallis Effects in Linear Molecules |
|
|
248 | (5) |
IV. Experimental Overtone Spectroscopy |
|
253 | (39) |
|
|
253 | (2) |
|
Fourier Transform Spectroscopy (FTS) |
|
|
255 | (7) |
|
|
255 | (2) |
|
Overtone Spectroscopy Using FTS |
|
|
257 | (5) |
|
Laser Overtone Spectroscopy |
|
|
262 | (30) |
|
Frequency Modulation with Diode Lasers (FMDL) |
|
|
263 | (2) |
|
|
263 | (1) |
|
Application of FMDL to Spectroscopy |
|
|
264 | (1) |
|
Cavity Ringdown Spectroscopy (CRDS) |
|
|
265 | (6) |
|
|
265 | (2) |
|
|
267 | (3) |
|
|
270 | (1) |
|
|
270 | (1) |
|
|
270 | (1) |
|
Intracavity Laser Absorption Spectroscopy (ICLAS) |
|
|
271 | (10) |
|
|
271 | (3) |
|
|
274 | (1) |
|
|
275 | (1) |
|
Spectral Resolution and Calibration |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
278 | (2) |
|
|
280 | (1) |
|
Optoacoustic (OA) Spectroscopy |
|
|
281 | (3) |
|
|
281 | (1) |
|
Application to Overtone Spectroscopy |
|
|
282 | (2) |
|
Optothermal (OT) Spectroscopy |
|
|
284 | (1) |
|
Comparison of FMDL, CRDS, ICLAS, and OA Methods |
|
|
285 | (3) |
|
Other Laser Investigations of Vibration--Rotation Levels |
|
|
288 | (4) |
|
|
289 | (1) |
|
Photofragment Spectroscopy |
|
|
290 | (1) |
|
Stimulated Emission Pumping and Dispersed Fluorescence |
|
|
290 | (2) |
Acknowledgments |
|
292 | (1) |
References |
|
293 | (38) |
Appendix A. Abbreviations and Symbols |
|
331 | (9) |
Appendix B. Bibliography on acetylene in the ground electronic state |
|
340 | (23) |
Appendix C. Vibrational Energy Levels of 12C2H2(X1Σ+g) |
|
363 | (26) |
Author Index |
|
389 | (26) |
Subject Index |
|
415 | |