Preface |
|
vii | |
Introduction |
|
1 | (8) |
1. Introduction to Classical Computation |
|
9 | (40) |
|
|
9 | (6) |
|
1.1.1 Addition on a Turing machine |
|
|
12 | (1) |
|
1.1.2 The Church-Turing thesis |
|
|
13 | (1) |
|
1.1.3 The universal Turing machine |
|
|
14 | (1) |
|
1.1.4 The probabilistic Turing machine |
|
|
14 | (1) |
|
1.1.5 * The halting problem |
|
|
15 | (1) |
|
1.2 The circuit model of computation |
|
|
15 | (9) |
|
|
17 | (1) |
|
1.2.2 Elementary logic gates |
|
|
17 | (5) |
|
1.2.3 Universal classical computation |
|
|
22 | (2) |
|
1.3 Computational complexity |
|
|
24 | (6) |
|
|
27 | (3) |
|
1.3.2 * The Chernoff bound |
|
|
30 | (1) |
|
1.4 * Computing dynamical systems |
|
|
30 | (5) |
|
1.4.1 * Deterministic chaos |
|
|
31 | (2) |
|
1.4.2 * Algorithmic complexity |
|
|
33 | (2) |
|
1.5 Energy and information |
|
|
35 | (6) |
|
|
35 | (2) |
|
1.5.2 Landauer's principle |
|
|
37 | (3) |
|
1.5.3 Extracting work from information |
|
|
40 | (1) |
|
1.6 Reversible computation |
|
|
41 | (6) |
|
1.6.1 Toffoli and Fredkin gates |
|
|
43 | (2) |
|
1.6.2 * The billiard-ball computer |
|
|
45 | (2) |
|
1.7 A guide to the bibliography |
|
|
47 | (2) |
2. Introduction to Quantum Mechanics |
|
49 | (50) |
|
2.1 The Stern-Gerlach experiment |
|
|
50 | (3) |
|
2.2 Young's double-slit experiment |
|
|
53 | (4) |
|
|
57 | (19) |
|
2.4 The postulates of quantum mechanics |
|
|
76 | (12) |
|
2.5 The EPR paradox and Bell's inequalities |
|
|
88 | (9) |
|
2.6 A guide to the bibliography |
|
|
97 | (2) |
3. Quantum Computation |
|
99 | (90) |
|
|
100 | (5) |
|
|
102 | (1) |
|
3.1.2 Measuring the state of a qubit |
|
|
103 | (2) |
|
3.2 The circuit model of quantum computation |
|
|
105 | (3) |
|
|
108 | (4) |
|
3.3.1 Rotations of the Bloch sphere |
|
|
110 | (2) |
|
3.4 Controlled gates and entanglement generation |
|
|
112 | (6) |
|
|
118 | (1) |
|
3.5 Universal quantum gates |
|
|
118 | (12) |
|
3.5.1 * Preparation of the initial state |
|
|
127 | (3) |
|
|
130 | (2) |
|
|
132 | (5) |
|
|
137 | (3) |
|
|
140 | (4) |
|
3.9.1 The Deutsch-Jozsa problem |
|
|
141 | (2) |
|
3.9.2 * An extension of Deutsch's algorithm |
|
|
143 | (1) |
|
|
144 | (8) |
|
3.10.1 Searching one item out of four |
|
|
145 | (3) |
|
3.10.2 Searching one item out of N |
|
|
148 | (1) |
|
3.10.3 Geometric visualization |
|
|
149 | (3) |
|
3.11 The quantum Fourier transform |
|
|
152 | (3) |
|
3.12 Quantum phase estimation |
|
|
155 | (3) |
|
3.13 * Finding eigenvalues and eigenvectors |
|
|
158 | (3) |
|
3.14 Period finding and Shor's algorithm |
|
|
161 | (3) |
|
3.15 Quantum computation of dynamical systems |
|
|
164 | (14) |
|
3.15.1 Quantum simulation of the Schrodinger equation |
|
|
164 | (4) |
|
3.15.2 * The quantum baker's map |
|
|
168 | (2) |
|
3.15.3 * The quantum sawtooth map |
|
|
170 | (4) |
|
3.15.4 * Quantum computation of dynamical localization |
|
|
174 | (4) |
|
3.16 First experimental implementations |
|
|
178 | (7) |
|
3.16.1 Elementary gates with spin qubits |
|
|
179 | (2) |
|
3.16.2 Overview of the first implementations |
|
|
181 | (4) |
|
3.17 A guide to the bibliography |
|
|
185 | (4) |
4. Quantum Communication |
|
189 | (26) |
|
4.1 Classical cryptography |
|
|
189 | (5) |
|
|
190 | (1) |
|
4.1.2 The public-key cryptosystem |
|
|
191 | (1) |
|
|
192 | (2) |
|
4.2 The no-cloning theorem |
|
|
194 | (4) |
|
4.2.1 Faster-than-light transmission of information? |
|
|
197 | (1) |
|
|
198 | (7) |
|
|
199 | (3) |
|
|
202 | (3) |
|
|
205 | (3) |
|
4.5 Quantum teleportation |
|
|
208 | (5) |
|
4.6 An overview of the experimental implementations |
|
|
213 | (1) |
|
4.7 A guide to the bibliography |
|
|
214 | (1) |
Appendix A Solutions to the exercises |
|
215 | (26) |
Bibliography |
|
241 | (12) |
Index |
|
253 | |