Preface |
|
xi | |
|
1 WHY EXTREME VALUE THEORY? |
|
|
1 | (44) |
|
1.1 A Simple Extreme Value Problem |
|
|
1 | (2) |
|
1.2 Graphical Tools for Data Analysis |
|
|
3 | (16) |
|
1.2.1 Quantile-quantile plots |
|
|
3 | (11) |
|
|
14 | (5) |
|
1.3 Domains of Applications |
|
|
19 | (23) |
|
|
19 | (2) |
|
1.3.2 Environmental research and meteorology |
|
|
21 | (3) |
|
1.3.3 Insurance applications |
|
|
24 | (7) |
|
1.3.4 Finance applications |
|
|
31 | (1) |
|
1.3.5 Geology and seismic analysis |
|
|
32 | (8) |
|
|
40 | (2) |
|
1.3.7 Miscellaneous applications |
|
|
42 | (1) |
|
|
42 | (3) |
|
2 THE PROBABILISTIC SIDE OF EXTREME VALUE THEORY |
|
|
45 | (38) |
|
|
46 | (5) |
|
|
51 | (5) |
|
2.3 The Frechet-Pareto Case: γ > 0 |
|
|
56 | (9) |
|
2.3.1 The domain of attraction condition |
|
|
56 | (1) |
|
2.3.2 Condition on the underlying distribution |
|
|
57 | (1) |
|
2.3.3 The historical approach |
|
|
58 | (1) |
|
|
58 | (3) |
|
2.3.5 Fitting data from a Pareto-type distribution |
|
|
61 | (4) |
|
2.4 The (Extremal) Weibull Case: γ less than 0 65 |
|
|
|
2.4.1 The domain of attraction condition |
|
|
65 | (2) |
|
2.4.2 Condition on the underlying distribution |
|
|
67 | (1) |
|
2.4.3 The historical approach |
|
|
67 | (1) |
|
|
67 | (2) |
|
2.5 The Gumbel Case: γ = 0 |
|
|
69 | (4) |
|
2.5.1 The domain of attraction condition |
|
|
69 | (3) |
|
2.5.2 Condition on the underlying distribution |
|
|
72 | (1) |
|
2.5.3 The historical approach and examples |
|
|
72 | (1) |
|
2.6 Alternative Conditions for (Cγ) |
|
|
73 | (2) |
|
2.7 Further on the Historical Approach |
|
|
75 | (1) |
|
|
76 | (1) |
|
2.9 Background Information |
|
|
76 | (7) |
|
2.9.1 Inverse of a distribution |
|
|
77 | (1) |
|
2.9.2 Functions of regular variation |
|
|
77 | (2) |
|
2.9.3 Relation between F and U |
|
|
79 | (1) |
|
2.9.4 Proofs for section 2.6 |
|
|
80 | (3) |
|
|
83 | (16) |
|
|
83 | (1) |
|
3.2 Order Statistics Close to the Maximum |
|
|
84 | (6) |
|
|
90 | (4) |
|
3.3.1 Remainder in terms of U |
|
|
90 | (2) |
|
|
92 | (1) |
|
3.3.3 Remainder in terms of F |
|
|
93 | (1) |
|
3.4 Mathematical Derivations |
|
|
94 | (6) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
4 TAIL ESTIMATION UNDER PARETO-TYPE MODELS |
|
|
99 | (32) |
|
|
100 | (1) |
|
|
101 | (6) |
|
|
101 | (3) |
|
|
104 | (3) |
|
4.3 Other Regression Estimators |
|
|
107 | (2) |
|
4.4 A Representation for Log-spacings and Asymptotic Results |
|
|
109 | (4) |
|
|
113 | (6) |
|
|
113 | (4) |
|
4.5.2 The probability view |
|
|
117 | (2) |
|
4.6 Extreme Quantiles and Small Exceedance Probabilities |
|
|
119 | (4) |
|
4.6.1 First-order estimation of quantiles and return periods |
|
|
119 | (2) |
|
4.6.2 Second-order refinements |
|
|
121 | (2) |
|
4.7 Adaptive Selection of the Tail Sample Fraction |
|
|
123 | (8) |
|
5 TAIL ESTIMATION FOR ALL DOMAINS OF ATTRACTION |
|
|
131 | (46) |
|
5.1 The Method of Block Maxima |
|
|
132 | (8) |
|
|
132 | (1) |
|
5.1.2 Parameter estimation |
|
|
132 | (3) |
|
5.1.3 Estimation of extreme quantiles |
|
|
135 | (2) |
|
5.1.4 Inference: confidence intervals |
|
|
137 | (3) |
|
5.2 Quantile View-Methods Based on (Cγ) |
|
|
140 | (7) |
|
|
140 | (2) |
|
5.2.2 The moment estimator |
|
|
142 | (1) |
|
5.2.3 Estimators based on the generalized quantile plot |
|
|
143 | (4) |
|
5.3 Tail Probability View-Peaks-Over-Threshold Method |
|
|
147 | (8) |
|
|
147 | (2) |
|
5.3.2 Parameter estimation |
|
|
149 | (6) |
|
5.4 Estimators Based on an Exponential Regression Model |
|
|
155 | (1) |
|
5.5 Extreme Tail Probability, Large Quantile and Endpoint Estimation Using Threshold Methods |
|
|
156 | (4) |
|
|
156 | (2) |
|
5.5.2 The probability view |
|
|
158 | (1) |
|
5.5.3 Inference: confidence intervals |
|
|
159 | (1) |
|
5.6 Asymptotic Results Under (Cγ)-(C*γ) |
|
|
160 | (5) |
|
|
165 | (2) |
|
|
165 | (2) |
|
5.7.2 Extreme quantiles and small exceedance probabilities |
|
|
167 | (1) |
|
5.8 Adaptive Selection of the Tail Sample Fraction |
|
|
167 | (2) |
|
|
169 | (8) |
|
5.9.1 Information matrix for the GEV |
|
|
169 | (1) |
|
|
169 | (3) |
|
5.9.3 GRV2 functions with ρ less than 0 171 |
|
|
|
5.9.4 Asymptotic mean squared errors |
|
|
172 | (1) |
|
5.9.5 AMSE optimal kappa-values |
|
|
173 | (4) |
|
|
177 | (32) |
|
|
177 | (11) |
|
6.2 The Secura Belgian Re Data |
|
|
188 | (12) |
|
6.2.1 The non-parametric approach |
|
|
189 | (2) |
|
6.2.2 Pareto-type modelling |
|
|
191 | (4) |
|
6.2.3 Alternative extreme value methods |
|
|
195 | (3) |
|
6.2.4 Mixture modelling of claim sizes |
|
|
198 | (2) |
|
|
200 | (9) |
|
|
209 | (42) |
|
|
210 | (1) |
|
7.2 The Method of Block Maxima |
|
|
211 | (7) |
|
|
211 | (1) |
|
7.2.2 Maximum likelihood estimation |
|
|
212 | (1) |
|
|
213 | (3) |
|
7.2.4 Estimation of extreme conditional quantiles |
|
|
216 | (2) |
|
7.3 The Quantile View-Methods Based on Exponential Regression Models |
|
|
218 | (7) |
|
|
218 | (1) |
|
7.3.2 Maximum likelihood estimation |
|
|
219 | (3) |
|
|
222 | (1) |
|
7.3.4 Estimation of extreme conditional quantiles |
|
|
223 | (2) |
|
7.4 The Tail Probability View-Peaks Over Threshold (POT) Method |
|
|
225 | (8) |
|
|
225 | (1) |
|
7.4.2 Maximum likelihood estimation |
|
|
226 | (3) |
|
|
229 | (2) |
|
7.4.4 Estimation of extreme conditional quantiles |
|
|
231 | (2) |
|
7.5 Non-parametric Estimation |
|
|
233 | (8) |
|
7.5.1 Maximum penalized likelihood estimation |
|
|
234 | (4) |
|
7.5.2 Local polynomial maximum likelihood estimation |
|
|
238 | (3) |
|
|
241 | (10) |
|
8 MULTIVARIATE EXTREME VALUE THEORY |
|
|
251 | (46) |
|
|
251 | (3) |
|
8.2 Multivariate Extreme Value Distributions |
|
|
254 | (21) |
|
8.2.1 Max-stability and max-infinite divisibility |
|
|
254 | (1) |
|
|
255 | (3) |
|
|
258 | (7) |
|
8.2.4 Properties of max-stable distributions |
|
|
265 | (2) |
|
|
267 | (4) |
|
8.2.6 Other choices for the margins |
|
|
271 | (2) |
|
8.2.7 Summary measures for extremal dependence |
|
|
273 | (2) |
|
8.3 The Domain of Attraction |
|
|
275 | (12) |
|
|
276 | (5) |
|
8.3.2 Convergence of the dependence structure |
|
|
281 | (6) |
|
|
287 | (3) |
|
|
290 | (2) |
|
|
292 | (5) |
|
8.6.1 Computing spectral densities |
|
|
292 | (1) |
|
8.6.2 Representations of extreme value distributions |
|
|
293 | (4) |
|
9 STATISTICS OF MULTIVARIATE EXTREMES |
|
|
297 | (72) |
|
|
297 | (3) |
|
|
300 | (13) |
|
9.2.1 Model construction methods |
|
|
300 | (4) |
|
9.2.2 Some parametric models |
|
|
304 | (9) |
|
9.3 Component-wise Maxima |
|
|
313 | (12) |
|
9.3.1 Non-parametric estimation |
|
|
314 | (4) |
|
9.3.2 Parametric estimation |
|
|
318 | (3) |
|
|
321 | (4) |
|
9.4 Excesses over a Threshold |
|
|
325 | (17) |
|
9.4.1 Non-parametric estimation |
|
|
326 | (7) |
|
9.4.2 Parametric estimation |
|
|
333 | (5) |
|
|
338 | (4) |
|
9.5 Asymptotic Independence |
|
|
342 | (23) |
|
9.5.1 Coefficients of extremal dependence |
|
|
343 | (7) |
|
9.5.2 Estimating the coefficient of tail dependence |
|
|
350 | (4) |
|
9.5.3 Joint tail modelling |
|
|
354 | (11) |
|
|
365 | (1) |
|
|
366 | (3) |
10 EXTREMES OF STATIONARY TIME SERIES |
|
369 | (60) |
|
|
369 | (2) |
|
|
371 | (1) |
|
10.2.1 The extremal limit theorem |
|
|
371 | (1) |
|
|
375 | (1) |
|
10.2.3 The extremal index |
|
|
376 | (6) |
|
10.3 Point-Process Models |
|
|
382 | (1) |
|
10.3.1 Clusters of extreme values |
|
|
382 | (1) |
|
10.3.2 Cluster statistics |
|
|
386 | (1) |
|
10.3.3 Excesses over threshold |
|
|
387 | (1) |
|
10.3.4 Statistical applications |
|
|
389 | (1) |
|
|
395 | (1) |
|
|
399 | (2) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
405 | (1) |
|
10.4.3 Cluster statistics |
|
|
406 | (1) |
|
10.4.4 Statistical applications |
|
|
407 | (1) |
|
10.4.5 Fitting the Markov chain |
|
|
408 | (1) |
|
|
411 | (1) |
|
|
413 | (6) |
|
10.5 Multivariate Stationary Processes |
|
|
419 | (1) |
|
10.5.1 The extremal limit theorem |
|
|
419 | (1) |
|
10.5.2 The multivariate extremal index |
|
|
421 | (1) |
|
|
424 | (1) |
|
|
425 | (4) |
11 BAYESIAN METHODOLOGY IN EXTREME VALUE STATISTICS |
|
429 | (32) |
|
|
429 | (1) |
|
|
430 | (1) |
|
|
431 | (2) |
|
11.4 Bayesian Computation |
|
|
433 | (1) |
|
11.5 Univariate Inference |
|
|
434 | (1) |
|
11.5.1 Inference based on block maxima |
|
|
434 | (1) |
|
11.5.2 Inference for Fréchet-Pareto-type models |
|
|
435 | (1) |
|
11.5.3 Inference for all domains of attractions |
|
|
445 | (7) |
|
11.6 An Environmental Application |
|
|
452 | (9) |
Bibliography |
|
461 | (18) |
Author Index |
|
479 | (6) |
Subject Index |
|
485 | |